Judit Makara

See more speakers [icon type=”glyphicon glyphicon-chevron-right” color=”#b50024″]

[column lg=”4″ md=”12″ sm=”12″ xs=”12″ ]


[column lg=”8″ md=”12″ sm=”12″ xs=”12″ ]

Institute of Experimental Medicine of the Hungarian Academy of Sciences, Hungary


Synaptic Physiology and Plasticity

Title of the talk:
Synaptic cooperation in dendrites of hippocampal pyramidal neurons



[well type=””]



Education and degrees:

1998-2001 PhD student at the Department of Physiology at the Semmelweis Medical University (Hungary)
Degree: PhD, 2003
1992-1998 studies of medicine at the Semmelweis Medical University (Hungary)
Degree: Medical Doctor, 1998


Scientific career:

2011 – Group leader at the Institute of Experimental Medicine of the Hungarian Academy of Sciences
2006 – 2011 Post-doc in the laboratory of Dr. Jeffrey Magee at the Janelia Farm Research Campus of the Howard Hughes Medical Institute
2003-2006 Post-doc in the laboratory of Dr. Tamas F. Freund at the Institute of Experimental Medicine of the Hungarian Academy of Sciences
2001-2003 Teaching assistant in the laboratory of Dr. Andras Spät at the Department of Physiology at the Semmelweis Medical University


Scientific honors:

2016 Boehringer Ingelheim FENS Research Award
2011-2016 Wellcome Trust International Senior Research Fellowship
2011-2016 “Lendület” grant of the Hungarian Academy of Sciences



Andrásfalvy B.K.*, Galiñanes G.L.*, Huber D., Barbic M., Macklin J.J., Susumu K., Delehanty J.B., Huston A.L., Makara J.K., Medintz I.L. Quantum dot-based multiphoton fluorescent pipettes for targeted neuronal electrophysiology. (2014) Nature Methods, AOP
Makara J.K., Magee J.C. Variable dendritic integration in hippocampal CA3 pyramidal neurons. (2013) Neuron, 80(6):1438-1450
Harnett M.T.*, Makara J.K.*, Spruston N., Kath W.L., Magee J.C. Synaptic amplification by dendritic spines enhances input cooperativity. (2012) Nature, 491(7425):599-602
Makara J.K., Losonczy A., Wen Q., Magee J.C. Experience-dependent compartmentalized dendritic plasticity in rat hippocampal CA1 pyramidal neurons. (2009) Nat. Neurosci., 12(12):1485-1487
Andrásfalvy B.K., Makara J.K., Johnston D., Magee J.C. Altered synaptic and non-synaptic properties of CA1 pyramidal neurons in Kv4.2 knockout mice. (2008) J. Physiol., 586(16): 3881-3892
Losonczy A.*, Makara J.K.*, Magee J.C. Compartmentalized dendritic plasticity and input feature storage in neurons. (2008) Nature, 452(7186):436-441
Makara J.K., Katona I., Nyiri G., Nemeth B., Ledent C., Watanabe M., de Vente J., Freund T.F., Hájos N. Involvement of nitric oxide in depolarization-induced suppression of inhibition in hippocampal pyramidal cells during activation of cholinergic receptors. (2007) J. Neurosci., 27(38):10211-10222
Makara J.K., Mor M., Fegley D., Szabó Sz.I., Kathuria S., Astarita G., Duranti A., Tontini A., Tarzia G., Rivara S., Freund T.F., Piomelli D. Selective inhibition of 2-AG hydrolysis enhances endocannabinoid signaling in hippocampus. (2005) Nature Neuroscience, 8(9): 1139-1141
Makara J.K., Koncz P., Petheő G.L., Spät A. Role of cell volume in K+-induced Ca2+ signaling by rat adrenal glomerulosa cells. (2003) Endocrinology; 144(11): 4916-4922
Makara J.K., Rappert A., Matthias K., Steinhäuser C., Spät A., Kettenmann H.K. Astrocytes from mouse brain slices express ClC-2 mediated Cl- currents regulated during development and after injury. (2003) Mol Cell Neuroscience; 23(4): 521-530
Makara J.K., Petheő GL, Tóth A, Spät A. pH-sensitive inwardly rectifying chloride current in cultured rat cortical astrocytes. (2001) Glia; 34(1): 52-58
Petheő G.L., Molnár Z., Róka A., Makara J.K., Spät A. A pH-sensitive chloride current in the chemoreceptor cell of rat carotid body. (2001) J Physiol London; 535(1): 95-106
Makara J.K., Petheő G.L., Tóth A., Spät A. Effect of osmolarity on aldosterone production by rat adrenal glomerulosa cells. (2000) Endocrinology; 141(5): 1705-1710
Várnai P., Petheő G.L., Makara J.K., Spät A. Electrophysiological study on the high K+ sensitivity of rat glomerulosa cells. (1998) Pflügers Arch – Eur J Physiol 435:429-431


[well type=””]


Most mammalian neurons receive thousands of excitatory synaptic contacts that are located on their elaborate dendritic tree. Judit Makara’s group is interested in how the passive and active electrical properties of dendrites influence the integration and somatic impact of activated synaptic inputs. Voltage dependent ion conductances in dendrites and spines may generate local nonlinear interactions of voltage and Ca2+ signals arising from spatially and temporally coactive synaptic inputs such as those provided by the correlated activity of a neuronal ensemble. Short- and long-term regulation of dendritic conductances represents a further layer of dendritic plasticity mechanisms that can modulate the precision, rate and timing of the output of neuronal populations receiving the same input patterns. The lab uses a combination of two-photon imaging and two-photon glutamate uncaging with electrophysiology, and studies the role of dendritic information processing mechanisms in the function of various neuronal types of the rodent hippocampal circuitry.


[button style=”btn-danger btn-sm” icon=”glyphicon glyphicon-chevron-right” align=”right” type=”link” target=”false” title=”More speakers” link=”https://www.neurizons.uni-goettingen.de/programme/speakers/”]