Panel discussion

Are we smart enough to understand our brains?

Can we really understand the organ that makes each of us uniquely “Us”? What does it mean to understand the brain? Can we understand any brains, if not humans? What are the current challenges in understanding the brain in its entirety? And do we, in neuroscience, ever expect to completely understand the brain?

These questions loom large over the field of neuroscience in its endeavor to comprehend the human brain. This panel discussion will bring together a diverse group of panelists from various fields, ranging from cognitive neuroscience and computer science to philosophy, to discuss their perspectives and ideas on these questions and many more as we try to gain a deeper insight into our ability to understand ourselves (our brains). 

Moderated by:

Dr. Stefan Treue

German Primate Center

Who is on the panel?

Marta Caravà

Ruhr-Unversität Bochum

Lucia Melloni

Max Planck Institute for Empirical Aesthetics Frankfurt and NYU Grossman School of Medicine

Catrin Misselhorn

University of Göttingen

Fabian Sinz

University of Tübingen and University of Göttingen

Stefan Treue

German Primate Center and University of Göttingen

Research at the Cognitive Neuroscience Laboratory is aimed at understanding the neural basis of visual perception. The accurate representation of visual motion in the environment is one of the most important tasks of the visual system. We try to elucidate this ability as a model for sensory information processing in general. Here, attention plays a special role, as it enables us to filter out unwanted information and concentrate the brain´s processing abilities on relevant information. Correspondingly, the focus of my lab is to study the role of attention in visual information processing in humans and non-human primates. While our emphasis is on electrophysiology, i.e. the recording of the activity of neurons in the visual cortex of macaque monkeys and measuring human perceptual abilities with psychophysical methods, we also use theoretical approaches and study social influences on visual perception and do research aimed at assessing and improving the welfare of primates in neuroscience research.

Get to know the panel:

Marta Caravà

Ruhr-Unversität Bochum

Dr. Marta Caravà specializes in the philosophy of mind, philosophy of cognitive science and philosophical psychology. Her main areas of interests include the embodied approach to cognition and emotions, enactivism, and ecological psychology. She works in these areas by combining methods in analytic philosophy and empirically informed philosophy.  

She did her PhD at the University of Bologna, with a research stay at the University of Memphis. She defended her dissertation on the topic of mental representations in the embodied approach to cognitive science in 2018.

From 2018 to 2020 she was a post-doctoral researcher at the University of Bologna, where she did research on the affective components of affordance perception and the role of material objects in emotion-regulation. 

In 2021 she was a visiting research fellow at the Research and Training Group ‘Situated Cognition’ at the Ruhr University Bochum and then a visiting post-doctoral fellow at the Institute for Philosophy II at the same university, where she worked on a project on embodied episodic memory. 

She is currently pursuing three main research lines: 

  1. How the active and controllable aspects of forgetting enhance psychological wellbeing;
  2. How material objects afford different kinds of cognitive and affective experiences;
  3. How we experience absences in perception and memory.

Lucia Melloni

Max Planck Institute for Empirical Aesthetics Frankfurt and NYU Grossman School of Medicine

Prof. Lucia Melloni is a Group Leader at Max Planck Institute for Empirical Aesthetics, Department of Neuroscience, Frankfurt and a Research Professor at NYU Grossman School of Medicine. Her lab is broadly interested in understanding the neural underpinnings of how we see (perception), how and why we experience what we see (consciousness), and how those experiences get imprinted in our brain (learning and memory) – as well as the interplay between these processes. She uses multiple methods to address these questions, ranging from electrophysiological and neuroimaging methods to behavioral techniques and online surveys. Her lab is committed to team science and open science practices and leads a large-scale adversarial collaboration to unravel the neural basis of consciousness and what makes us humans.

Catrin Misselhorn

University of Göttingen

Catrin Misselhorn is professor of philosophy at the University of Göttingen. She is working on philosophical problems of AI, robot- and machine ethics. She aims at giving a philosophical assessment of what AI can and should do, and where its limits are from a theoretical as well as moral point of view. For her, AI is a valuable philosophical tool to improve our understanding of ourselves and of what matters to us. She discusses justified ethical concerns and tries to give guidelines for a development of an AI that can promote human autonomy, dignity and responsibility.

Catrin Misselhorn is the author and editor of several books and journal articles in the philosophy of AI. Her book “Basic Issues in Machine Ethics” was third on the shortlist for the best non-fiction books by ZDF, DIE ZEIT, and Deutschlandfunk Kultur.

Fabian Sinz

University of Tübingen and University of Göttingen

Dr. Fabian Sinz is a Professor for Machine Learning, University Göttingen. His group uses artificial intelligence both as a testbed and a tool on large scale neuro-physiological and -anatomical data to better understand the constituent elements of neuronal intelligence. Despite huge advances in artificial intelligence (AI), the mammalian brain is still unrivaled in terms of sustainability and speed of learning, and robustness in inference. One central goal of AI research is to build intelligent systems that exceed the capabilities of biological brains. However, to date we know very little about how computations in neuronal circuits give rise to biological intelligence. Dr. Fabian Sinz is inspired by the idea that a deeper understanding of computational motifs in cortical circuits can help build the next generation of intelligent systems.

Please find more info on:

Panel Discussion


In addition to being a platform to learn from leading scientists and experts, Neurizons 2020 also provides an opportunity to engage in debate and discussion in the form of a panel discussion. This year’s topic was Natural vs. Artificial intelligence. 

Experts from a wide variety of fields, ranging from cognitive science to artificial intelligence research, presented their perspectives on the biological and computational aspects of intelligence. The discussion spanned from the current state of the field in terms of our understanding of intelligence, to our progress towards creating artificial intelligences, and to what extent the development of AI is / should be biologically inspired, and more. 

ImageThink has kindly provided a graphic summary of this year’s panel discussion:


Each speaker gave a 10-minute talk on their perspective on the topic, and it was followed by a 30-minute discussion between speakers and the audience.

About the panelists and the moderator


Dr. Caspar Schwiedrzik

Cognitive / Systems neuroscientist 

Dr. Caspar Schwiedrzik is currently a group leader of the Neural Circuits and Cognition Lab at the European Neuroscience Institute- Goettingen and also the Perception and Plasticity Group at the German Primate Center in Goettingen, Germany. The work in his lab encompasses studying learning, generalization and predictability in perception.  He conducted his doctoral research at the Max Planck Institute for Brain Research, in Frankfurt, Germany with Dr. Wolf Singer, focusing on the role of previous experience in visual perception. Following this, he conducted his post-doctoral research at The Rockefeller University, New York, USA with Prof. Winrich Freiwald, focusing on plasticity and connectivity of the macaque face processing system.

His lab currently focuses on learning; a core building block of intelligent behaviour, which endows complex systems with flexibility to adjust to changing environments, and with the capacity to generalize to novel situations. The lab investigates learning in vision at multiple time scales, from learning effects that build up within seconds to learning effects that take days and weeks to materialize, and across levels of complexity, from learning to discriminate simple visual features to high-level associative and statistical learning. To this end, the lab capitalizes on combining noninvasive neuroimaging with electrophysiological recordings and causal manipulations of brain activity in non-human primates, and parallel experiments using electrocorticography and fMRI in humans. The overall goal is to determine the neural basis of the visual system’s capacity to learn and generalize through an explicitly comparative approach – a necessary step towards understanding the human mind and its complexity.


Prof. Dr. Wolf Singer 

neurophysiologist and cognitive scientist

Read more about Dr. Wolf Singer here


Dr. Joscha Bach 

AI researcher and cognitive scientist

Dr. Joscha Bach studied Computer Science and Philosophy at the Humboldt University of Berlin for his master’s, with a focus on AI and models of cognition (under Dr. Hans-Dieter Burkhard). He also studied Computer Science at the University of Waikato in New Zealand, with Dr. Ian Witten, where he used neurolinguistic programming to analyze the structure of text. Dr Bach completed his doctorate degree at the Institute of Cognitive Science in Osnabrück, where he worked on cognitive architectures and AI. He then researched models of motivation and AGI at the MIT Media Lab, as well as cognitive modeling and request confirmation networks at Harvard University.

Dr. Bach now works as VP of Research at AI Foundation in San Francisco. His main focus of research lies in Artificial General Intelligence. He is interested in models of perception, autonomous agency, general principles of learning, and the architecture of human motivation.

Dr. Bach views Artificial Intelligence as two very different things: a very active field of research into advances in information processing, and a daring, complicated, and extremely important philosophical project. Conflating these two topics has led to a lot of confusion in the perception of the field, and its role in the cognitive sciences. He believes that intelligence may be best understood as the ability to make models, usually in the service of solving problems. As we are currently witnessing the second era of AI, which is no longer focused on writing algorithms to solve problems, but on algorithms that learn how to solve problems by themselves, Dr. Bach is interested to see if this will be followed by an era of meta-learning: systems that learn how to learn. Some problems are so general that they require modeling the observer and its relationship to the environment, which is a precondition for a sentient system and general intelligence. According to Dr. Bach, at the moment, the biggest unsolved problem in AI may be the creation of a unified model of the world: a fully connected universe that also contains a model of the observer. Making progress on this problem will likely lead to a direction in which natural and artificial intelligence meet.


Dr. Angela Yu

Cognitive / Systems neuroscientist

Dr. Angela Yu obtained her bachelor’s at Massachusetts Institute of Technology, where her research focused on mathematical modeling of neuronal computations. During her PhD at University College London, she modelled the effects of different forms of uncertainty on learning and inference; and showed how these computations are carried out in the brain. She then worked on computational modeling of cognitive functions under the supervision of Prof. Cohen at Princeton University.

Dr. Yu’s lab uses a combination of mathematical modeling and behavioral experiments in order to understand the nature of representation and computations that give rise to intelligent behavior. She is particularly interested in the challenges posed by inferential uncertainty and the opportunities afforded by volitional control. 

She believes that natural and artificial intelligence have a long and fruitful history of cross-fertilization, with some of the most impressive advancements in modern AI coming from biologically-inspired neural networks, and some of the best algorithmic models of neuronal processes inspired by machine learning algorithms. However, when it comes to answering the question of what intelligence is, we still flounder, not fully understanding. Current neuroscience and AI focus on what David Marr called the computational level of analyses, which Dr. Yu thinks we are still missing. By characterizing formally the goals of intelligence and the tasks an intelligent agent is supposed to solve, we can progress in both fields synergistically.

Dr. Frank Jäkel

Cognitive / Systems neuroscientist

Prof. Frank Jäkel was a PhD student at the Max Planck Institute for Biological Cybernetics in Tübingen, Germany. There, he worked on the mechanisms behind categorization in humans and machines. He continued as a post-doc at Technische Universität Berlin, improving psychophysical methods, before moving to the Massachusetts Institute of Technology, where he focused on computational cognitive science. Dr. Jäkel also has experience outside of academia, as he worked as a consultant for data science and Artificial Intelligence. 

He is now a Professor at Technische Universität Darmstadt, where his lab studies how new concepts are learned, how these concepts are rooted in perception, and how concept formation interacts with problem solving. His general approach is to combine insights from experimental psychology and artificial intelligence (machine learning in particular) to build models of higher cognition.

Prof. Jäkel believes that to understand intelligent behavior in humans and other animals, it is crucial to build artificial systems that can behave similarly. However, artificial intelligence is most useful when it is used as a cognitive tool that complements rather than mimics natural intelligence.

Panel Discussion

Neurizons will offer a platform for young scientists not only to learn from masters in a scientific field, but also to bring forward their own ideas and engage in a scientific exchange with these experts. We are inviting three speakers who are leading scientists in their field to introduce a scientific topic for discussion. This year’s topic is “Are animals conscious?”. The introduction will be followed by a 30-minute long interactive discussion between the speakers and the participants. Join us and share your ideas!

A 10-minute talk by the invited speakers, followed by a 30-minute discussion session.

Topic of this year
Are animals conscious?

Confirmed Speakers

Prof. Nicholas Humphrey: “How is it for them?”

What’s it like to be a dog, a spider, an earthworm or an intelligent robot? Are the lights on? What difference would it make? Many theorists assume that the phenomenal quality of consciousness emerges as an accidental side-effect of complex information processing by the brain, and that it has no consequences for cognition or behaviour. I argue, to the contrary, that phenomenal quality, if and where it exists, is a super-added feature of consciousness that has evolved because of the biological benefit it brings. In the case of human beings, it enhances the value of lived experience and thus changes humans’ sense of self-worth and their outlook on the material and social world. The question is: for which if any nonhuman animals does – or could – consciousness play this adaptive role? We can seek evidence at two levels: 1. Does the animal’s brain have the additional circuitry? 2. Does the animal’s behaviour demonstrate the additional commitment to life? My own reading of the evidence is that the majority of animals are not conscious in this way. The lights are off. If we apply the same criteria to intelligent machines, we can be sure that at the present stage of development the same is true.


Dr. Irene Pepperberg

Arguments for human consciousness usually derive from introspective reports; we lack such reports for nonhumans. Given the absence of confirmatory data, I argue that nonhumans have an awareness distinct from human consciousness; the extent to which it approaches human consciousness is the subject of ongoing study. I propose that this awareness is required for complex tasks and is a form of higher order cognition, sensu Delacour (1997), who posits consciousness as a “…certain style of cognition, characterized by a particular integration of different processes…” For some nonhumans, this awareness involves the capacity not only to process perceived data, but also to choose, from among various possible sets of rules that have been acquired or taught, the set that appropriately governs the current processing of that data (Pepperberg 1999). Simple associative processes probably require only basic perception. In contrast, complex comparative psychology tasks (e.g., transfer, hierarchical category formation) require integrating perception, centralized monitoring, and behavioral control; for some tasks, however, even this information-processing account cannot explain observed data. I will review one of several studies that provide evidence not for nonhuman consciousness equivalent to that of humans, but possibly for some of its elements: evidence concerning a Grey parrot’s derivation of a zero-like concept.


Prof. Dr. Melanie Wilke: “Visual consciousness and its losses”

At every moment when we are awake, our brains create an ‘inner world’, filled with percepts, imaginations and feelings. How does physical matter such as neurons in our brains lead to these subjective states and is there a special ‘hardware’ or dynamic required? Drawing conclusions from neuroscientific experiments in humans and animals, this talk will address the question where and how activity in the brain correlates with our subjective perception. In addition, the talk will discuss how damage to the brain, due to local inactivation of brain structures in animals or due to stroke in humans, can impair conscious perception. By better understanding the symptoms of patients we are learning more and more about the neural mechanisms underlying such failures and recovery of consciousness.