Daniel Kronauer

See more speakers [icon type=”glyphicon glyphicon-chevron-right” color=”#b50024″]

[column lg=”4″ md=”12″ sm=”12″ xs=”12″ ]

[column lg=”8″ md=”12″ sm=”12″ xs=”12″ ]

The Rockefeller University


Evolutionary and Developmental Neuroscience

Title of talk:
Communication and social behavior in ants


[well type=””]


Insect societies are socially integrated to such an extent that they are often portrayed as “superorganisms” in which different morphological or behavioral castes have different functions, similar to the tissues of an organism. The Kronauer lab uses ants to study a number of broad questions: How did complex animal societies evolve from solitary ancestors? How does behavioral and developmental plasticity give rise to division of labor? How do individual ants produce, perceive, and process social signals? And how does the composition and network structure of social groups affect emergent group-level properties and fitness?

To address these questions, the lab uses molecular genetics and neuroscience in combination with quantitative behavioral and morphological measurements under controlled laboratory conditions. In particular, the researchers are developing and using the clonal raider ant Ooceraea biroi as a new model system for social behavioral genetics. The clonal raider ant is a powerful model system because it uniquely combines the rich biology of social insects with unparalleled experimental accessibility. For example, the species’ unusual biology makes it possible to control and replicate the size, genotypic composition, and age structure of colonies—the three central factors affecting individual behavior, division of labor, and social networks in ants. The Kronauer lab has recently published the species’ genome and has developed protocols for genome editing along with automated tracking setups that allow precise quantification of individual and group behavior, as well as social interaction networks.